<table>
<thead>
<tr>
<th>Page</th>
<th>Content</th>
</tr>
</thead>
</table>
| p193 | World views -- great chain of being, Creation
Effect can have no more perfection than cause
Physical change is only rearrangement |
| p194 | Emergence is denial of eliminativism & pansychism
All causality is efficient cause
Fundamental attributes cannot appear |
| p195 | J.S. Mill emergent properties in chemistry "no mere summing"
George Henry Lewes coined the term emergence
Followed by the British Emergentists
Pepper, Sperry, Putnam, Kim, Humphreys, |
| p196 | Parts/wholes mentioned in role for Kim & Humphreys*
Focus on dynamics becomes important re problem of emergence
Complex Dynamical systems theory more accepted today
Deacon argues whole not greater than sum of its parts...
Constitutive absences will explain emergent attributes
Second law is not a necessary law -- ubiquitous tendency
From constraint to self-organization to organism |
| p197 | p4-5 |
| p198 | p6 |
| p199 | p6 |
| p200 | p.10 |
| p201 | Organism vs machines
Solely motive power
Formative power
Reciprocal cause and effect
Intrinsic generation of constraints |
| p196 | CD BROAD
CD BROAD -- novel properties that emerged via compositionality could exhibit discontinuous causal laws than those characterized by components in isolation |
| p202-203 | Constraint generation process and normativity
Constraints as intrinsically generated
Interpretation processes |
| p202 | p15 |
| p202 | Interpretation processes
Representation in "self-organized attractors in neural circuits" |
| p203-204 | Emergence as the result of the hierarchy of constraints
Context-sensitive constraints are generative, creating hierarchies of emergent systems on top of systems |